国家杰出青年基金获得者,北京市特聘教授,北京市高层次人才引进计划入选者
ligeng.ma@cnu.edu.cn
硕士研究生招生:植物学--植物基因表达调控机制
博士研究生招生:细胞生物学--植物基因表达调控机制
教育经历
1987年:河北师范大学生物学系学士学位
1990年:河北师范大学生物学系硕士学位
1997年:中国农业大学生物学院博士学位
工作主要经历
2011.12- 今 91糖心vlog传媒教授、博士研究生导师
2010.1 - 2011.11 河北师范大学生命科学学院教授、博士研究生导师
2005.1 - 2010.1 北京生命科学研究所研究员、博士研究生导师
2000.8 - 2004.12美国耶鲁大学分子、细胞和发育生物学系博士后
1996.6 - 2000.8 河北师范大学生物学系教授(1998年起博士研究生导师)
1990.7 - 1996.6 河北师范大学生物学系助教、讲师
社会兼职
《BMC Plant Biology》和《Frontiers in Plant Science》Associate editor
获奖或荣誉情况
国家自然科学奖二等奖(排名第叁)
国家杰出青年基金获得者
全国百篇优秀博士论文提名奖指导教师
河北省自然科学一等奖(排名第二)
教育部科技进步二等奖(排名第二)
教育部霍英东教育基金会高校青年教师研究叁等奖
《利用DNA微阵列芯片研究拟南芥光调控发育过程》入选2002年度“中国高等学校十大科技进展”(论文第一作者,获奖排名第叁)
中国植物生理学会优秀论文一等奖(排名第一)
北京市中关村高端领军人才
河北省省管优秀专家
河北省有突出贡献的中青年专家
研究方向
研究方向是以植物为模型研究基因表达调控的分子机制(集中在由前体mRNA到成熟mRNA调控的分子机制),以及这种分子机制在植物细胞分化发育和适应环境中的作用和在作物分子设计育种中的应用。
基因表达的调控至少发生在两个层面:转录调控和转录后调控。基因转录调控是由基因组DNA和与其紧密结合的组蛋白构成的染色质的共价修饰状态决定,即基因表达与否以及表达水平的高低在很大程度上取决于该基因染色质的表观遗传修饰状态,而染色质的修饰状态又受细胞内外信号的调控,并通过转录调控复合体对染色质的共价化学修饰实现的。通过基因的转录过程形成的是前体mRNA (pre-mRNA),前体mRNA需要进一步通过剪接和多聚腺苷酸环化(Polyadenylation)才能形成用于翻译成蛋白的成熟mRNA。由前体mRNA到成熟mRN的调控称之为转录后调控,其中基因的可变剪接是基因表达转录后水平调控的主要方式之一,通过基因的可变剪接,同一个基因的前体mRNA通过内含子保留、外显子跳跃以及不同3’或5’剪接位点的识别可以产生多种mRNA,也因此可以产生以下叁种结果:1,增加了每个物种细胞内蛋白质的复杂性(在基因组编码基因数量一定的前提下增加了蛋白质的种类);2,降低了最常见类型mRNA(简单称为有功能mRNA)的水平进而影响该基因的功能;3,可能产生对细胞有害的蛋白质,进而妨碍该基因编码的正常形式蛋白的功能。所以,基因可变剪接的精度和效率对基因最终发挥功能有非常重要的调控作用。基因可变剪接异常会导致动植物生长发育以及环境适应障碍以及人类的多种疾病。基因的可变剪接是由细胞内的剪接复合体(Spliceosome)实施的,剪接复合体是一个由多个蛋白构成的大的蛋白复合体,该复合体对前体mRNA剪接的精度和效率决定于组成该复合体的蛋白动态组装和解离过程,剪接复合体组分的缺失会影响它对前体mRNA剪接的精度和效率。
我们实验室前期研究结果证实SKIP既是转录复合体组分,通过调控染色质的修饰状态调控基因的转录影响植物的发育;同时SKIP还是剪接复合体的组分,通过调控基因的可变剪接影响植物对环境的适应。我们实验室将在上述工作的基础上,利用遗传学、生物化学、细胞生物学和分子生物学手段分析植物由前体RNA (pre-mRNA)到成熟mRNA的调控机制,以及这种分子机制在植物发育和环境适应中的功能和在作物育种中的应用。
发表主要论文:
发表的论文被SCI收录超过60篇,被SCI引用总次数超过10000次,其中单篇论文最高引用超过500次,发表的主要论文有:
Selected publications:
60, Li R, Li S, Ma LG*. Modified Pseudo-Schiff Propidium Iodide for Staining the Shoot Apical Meristem in Arabidopsis. Bioprotocol, 2023, 13(09): e4672.
59, Wu J, Ma LG, Cao Ying*. Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int. J. Mol. Sci. 2023, 24, 4727.
58,Wei, S, Ma LG*. Comprehensive Insight into Tapetum-Mediated Pollen Development in Arabidopsis thaliana. Cells, 2023, 12, 247.
57, Li R, Wei Z, Li Y, Shang X, Cao Y, Duan L, Ma LG*. SKI-INTERACTING PROTEIN interacts with SHOOT MERISTEMLESS to regulate shoot apical meristem formation.Plant Physiology, 2022, 189(4):2193-2209.
56, Feng J, Qin M, Yao L, Li Y, Han R, Ma LG*. The N-terminal acetyltransferase Naa50 regulates tapetum degradation and pollen development in Arabidopsis.Plant Science, 2022 Mar;316:111180.
55, Li J, Li Y, Ma LG*. Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. aBiotech, 2021
54, Li J, Wang Z, Chang Z, He H, Tang X, Ma LG*, Deng XW*. A functional characterization of TaMs1 orthologs in Poaceae plants. The Crop Journal, 2021
53, Yang J, Cao Y. Ma LG*. Co-Transcriptional RNA Processing in Plants: Exploring from the Perspective of Polyadenylation. International Journal of Molecular Sciences, 2021 22(7):3300.
52, Chen Z, Wang J, Li J, Heng Y, Pei J, Cao Y, Deng XW*, Ma LG*. Generation of a series of mutant lines resistant to imidazolinone by screening an EMS-based mutant library in common wheat. The Crop Journal, 2021
51, Feng J, Hu J, Li Y, Li R, Yu H, Ma LG*. The N-Terminal Acetyltransferase Naa50 Regulates Arabidopsis Growth and Osmotic Stress Response. Plant & Cell Physiology, 2020, 61:1565-1575
50,Li J, Yang J, Li Y, Ma LG*. . The Crop Journal, 2020, 8:879 -891.
49,Li J, Wang J, He G, Ma LG*, Deng XW*. CRISPR/Cas9 mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Journal of Genetics and Genomics, 2020, 47:263-272.
48,,Li J, Li Y, Ma LG*. CRISPR/Cas9-Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. 2019, Small Methods, 3:1800473
47, Cao Y, Wang Y, Li Y, Yang J, Ma LG*. The Arabidopsis AGAMOUS 5′-UTR represses downstream gene translation. Science China-Life Science, 2019, 62:272-275
46, Cao Y, Ma LG*. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. Frontiers in Plant Science, 2019, 10
45, Li Y , Yang J, Shang X, Lv W, Xia C, Wang C, Feng J, Cao Y, He H, Li L, Ma LG*. SKIP regulates environmental fitness and floral transition, respectively, by forming two distinct complexes in Arabidopsis. New Phytologist, 2019, 224:321–335
44, Xu L, Hu Y, Cao Y, Li J, Ma LG , Li Y and Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. Science China-Life Science, 2018, 61:178-189
43, Wang Z, Li J, Chen S, Heng Y, Chen Z, Yang J, Zhou K, Pei J, He H*, Deng XW*, Ma LG*. Poaceae-specific MS1 encodes a phospholipid-binding protein for male fertility in bread wheat. PNAS, 2017, 114:12614-12619.
42, Li J, Wang Z, Hu Y, Cao Y, Ma LG*. Polycomb group proteins RING1A and RING1B regulate the vegetative phase transition in Arabidopsis. Frontiers in Plant Science, 2017, 8: 867.
41, Feng, J., Ma, LG*. A method for characterizing embryogenesis in Arabidopsis. Journal of Visualized Experiments, 2017, e55969
40, Shang X, Cao Y, Ma LG*. Alternative splicing in plant genes: A means of regulating the environmental fitness of plants. International Journal of Molecular Sciences, 2017, 18:432;
39, Feng J, Li R, Ma S, Wu C, Li Y, Cao Y, Ma LG*. Protein N-terminal acetylation is required for embryogenesis in Arabidopsis. Journal of Experimental Botany, 2016, 67: 4779–4789.
38, Feng J, Ma LG*. NatA is required for suspensor development in Arabidopsis. Plant Signaling & Behavior, 2016, 11: e1231293.
37, Li Y, Xia C, Feng J, Yang D, Wu F, Cao Y, Li L, Ma LG*. The SNW domain of SKIP is required for its integration into the spliceosome and its interaction with the Paf1 complex in Arabidopsis. Molecular Plant, 2016, 9:1040–1050.
36, Cao Y, Wen L, Wang Z, Ma LG*. SKIP interacts with the Paf1 complex to regulate flowering via the activation of FLC transcription in Arabidopsis. Molecular Plant, 2015, 8:1816–1819.
35, Feng J, Li J, Gao Z, Lu Y, Yu J, Zheng Q, Yan S, Zhang W, He H, Ma LG*, Zhu Z*. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Molecular Plant, 2015, 8:1038–1052.
34, Ning YQ, Ma ZY, Huang HW, Mo H, Zhao T, Lin Li, Cai T, Chen S, Ma LG, He XJ. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Research, 2015, 43:1469-1484.
33, Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma LG*, Huang R*. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genetics, 2013, 9: e1004025.
32, Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma LG, Deng XW, Huang R. Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis.Plant Cell, 2013, 25:625-36.
31, Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Temps P,.Townes TM, Giles KE, Ma LG, and Wang H. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. 2013, Genes & Development, 27:1581–1595.
30, Zhao H., Liu L, Mo H, Qian L, Cao Y, Cui S, Li X, Ma LG*.The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in Arabidopsis. PLoS ONE, 2013, 8: e60809
29, Wang X, Wu F, Xie Q, Wang H, Wang Y, Yue Y, Gahura O, Ma S, Liu L, Cao Y, Jiao Y, Puta F, McClung CR, Xu X, Ma LG*. SKIP is a component of the spliceosome linking alternative splicing and the circadian clock in Arabidopsis. Plant Cell, 2012, 24: 3278–3295.
28, Yang HC, Cao Y, Han ZF, Mo HX, Fan D, Li H, Liu L, Yue YL, She C, Chai JJ, Ma LG*. A companion cell-dominant and developmentally-regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genetics, 2012, 8: e1002664.
27, Fan D, Dai Y, Wang X, Wang Z, He H, Yang H, Cao Y, Deng XW, Ma LG*. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis. Nucleic Acids Research, 2012, 40:8905-8916.
26, Zhao H, Wang X, Zhu D, Cui S, Ma LG*. A single amino acid substitution in a IIIF bHLH transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. Journal of Biological Chemistry, 2012, 287:14109-14121.
25, Yang HC, Mo HX, Fan D, Cao Y, Cui SJ, Ma LG*. Overexpression of a histone H3K4 demethylase, JMJ15, accelerated flowering time in Arabidopsis. Plant Cell Reports, 2012, 31:1297-1308.
24,Zhao H, Li X, Ma LG*. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis. Plant Signaling & Behavior, 2012, 7:1-5.
23, Wang X, Ma LG*. Unraveling the circadian clock in Arabidopsis.Plant Signaling & Behavior, 2012, 8: pii: e23014.
22,Cao Y, Ma LG*. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. Frontier Biology, 2011, 6:109-117.
21,Li W, Wang Z, Li J, Yang H, Cui S, Wang X, Ma LG*. Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis. PLoS ONE 2011, 6: e21364.
20,Lu SX, Liu H, Knowles SM, Li J, Ma LG, Tobin EM, Lin C. A role for protein kinase CK2 alpha subunits in the Arabidopsis circadian clock. Plant Physiology 2011, 157:1537-1545.
19,Ma LG. MicroRNAs and their targets from rice to Arabidopsis : half conserved and half diverged (invited comments). Frontier Biology, 2010, 5 :3-4.
18,Jiao YL, Tausta SL , Gandotra N , Sun N, Liu T, Clay NK, Ceserani T, Chen MQ, Ma LG, Holford M, Zhang HY, Zhao HY, Deng XW, Nelson T. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nature Genetics, 2009, 41:258-263.
17,Cao Y, Dai Y, Cui SJ, Ma LG*. Histone H2B monoubiquitination is required for histone H3K4 methylation of FLC/MAFs chromatin and flowering time control in Arabidopsis. Plant Cell, 2008,20:2586-602.
16, Wu Y, Zhu Z, Ma LG, Chen M. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution.Mol. Biol. Evol., 2008, 25:1003-1006. doi: 10.1093/molbev/msn052
15,Wang XX, Ma LG*. Polycomb-group (Pc-G) proteins control seed development in Arabidopsis (Invited review). Journal of Integrative Plant Biology, 2007, 49: 52-59.
14, Qin G, Gu H, Ma LG, Peng Y, Deng XW, Chen Z, Qu LJ. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis.Cell Research, 2007, 17:471-482.
13,Jiao Y*, Ma LG*, Strickland E, Deng XW. Conservation and Divergence of Light-Regulated Genome Expression Patterns during Seedling Development in Rice and Arabidopsis. Plant Cell, 2005,17:3239-3256.
12, Ma LG, Chen C, Liu X, Jiao Y, Su N, Li L, Wang X, Cao M, Sun N, Zhang X, Bao J, Li J, Pedersen S, Bolund L, Zhao H, Yuan L, Wong GKS, Wang J, Deng XW, Wang J. An analysis of transcriptional regulation of the rice genome and its comparison to Arabidopsis. Genome Research,2005, 15:1274-1283.
11,Ma LG, Sun N, Liu X, Jiao Y, Zhao H, Deng XW. Organ-specific genome expression atlas during Arabidopsis development. 2005, Plant Physiology, 138:80-91.
10,Shen YP, Feng SH, Ma LG, Lin RC, Qu LJ, Chen ZL, Wang HY, Deng XW. Arabidopsis FHY1 protein stability is regulated by light via phytochrome a and 26S proteasome. Plant Physiology, 2005, 139:1234-124.
9,Feng S*, Ma LG*, Wang X, Xie D, Dinesh-Kumar S. P., Wei N, and Deng XW. The COP9 Signalosome Physically Interacts with SCFCOI1 and Modulates Jasmonate Responses. Plant Cell, 2003, 15:1083-1094.
8,Ma LG, Zhao H, Deng XW. Analysis of the mutational effects of the COP/DET/FUS loci on genome expression profiles reveals their overlapping yet not identical roles in regulating Arabidopsis seedling development. Development, 2003, 130: 969-981.
7, Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 2003, 1321260-1271.
6,Ma LG, Gao Y, Qu LJ, Chen ZL, Li JM, Zhao H, Deng XW. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002,14: 2383-2398.
5,Wang H*, Ma LG*, Habashi J, Li JM, Zhao H, Deng XW. Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant Journal, 2002, 32:723-734.
4,Holm M, Ma LG, Qu LJ, Deng XW. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development, 2002, 16: 1247-1259.
3,Ma LG, Li JM, Qu LJ, Hager J, Chen ZL, Zhao H, Deng XW. Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell, 2001, 13: 2589-2607.
2,Wang H, Ma LG, Li JM, Zhao H, Deng XW. Direction interaction of Arabidopsis cryptochromes with COP1 in light control development. Science, 2001, 294:154-158.
1,Ma LG, Xu X, Cui S, Sun D. The presence of a heterotrimeric G protein and its role in signal transduction of extracellular calmodulin in pollen germination and tube growth. Plant Cell, 1999 11:1351–1363.