王海龙

教授,博士生导师

  • 联系方式

    电话: 010-68901494
    Email: hailwang@cnu.edu.cn

  • 招生方向

    硕士研究生招生:071010 生物化学与分子生物学-肿瘤发生的分子机制
    博士研究生招生:071010 生物化学与分子生物学-肿瘤发生的分子机制

91糖心vlog传媒

教育及工作经历

1995-1999     北京师范大学生命科学学院

2002-2007     北京师范大学生命科学学院

2008-2013 博士后   美国斯克利普斯研究所The Scripps Research Institute, La Jolla, California

1999-2007 实验师   北京师范大学生命科学学院

2013-2018 副教授   91糖心vlog传媒

2019-        91糖心vlog传媒


主持科研项目

1国家自然科学基金面上项目,32371354,解螺旋酶HXDSB末端修切及停滞复制叉保护中的功能研究,50万,2024-2027

2北京市教委-市自然基金委联合资助项目,23JE0003,乙酰化修饰对NONO功能的调控,80万,2023-2025

3国家自然科学基金面上项目,31971221,赖氨酸巴豆酰化修饰在DNA损伤响应中的调控功能研究,69.6 2020-2023

4国家重大科学研究计划(973)子课题,2015CB910602-002, DNA双链断裂修复蛋白CtIP的功能及调控,146.5万元,2015-2019

5北京市自然科学基金面上项目 5182003 CtIPMicroRNA加工及肿瘤转移中的功能研究, 20万,2018-2020

6国家自然科学基金面上项目31370841CtIP 的核酸酶活性及其参与 DNA 双链断裂修复的机制研究 80万,2014-2017

7北京市属高等学校青年拔尖人才培育计划,30万,2015-2017

8首师大青年燕京学者培育计划: 20 2015-2017


荣誉奖励

国家教育教学成果奖二等奖,2005,第叁完成

北京市教育教学成果奖一等奖,2004,第叁完成

国家级精品课程,2004,第叁完成

北京市精品课程,2004,第叁完成

全国高校生命科学类微课教学比赛二等奖: 2016,独立完成

北京市大学生实验设计竞赛 一等奖 2019指导教师

全国大学生生命科学竞赛 一等奖,2019,指导教师

优秀主讲教师,2019-2020,2020-2021,2021-2022

首都师范大学师德先进个人,2023

首都师范大学优秀教师2023


学术兼职

中国细胞生物学学会细胞信号转导分会委员

北京市生物化学与分子生物学学会青年委员

北京市青少年创新学院海淀分院学术委员会委员

首都师范大学教学指导委员会委员

首都师范大学生命科学学院学术委员会委员

首都师范大学生命科学学院教学指导委员会委员


执教课程

《生物化学》(本科生专业核心课

《生物化学与分子生物学》(研究生专业课

《分子生物学实验》(本科生专业必修实践课


研究领域

遗传信息的精准复制和传递对于维持正常的生命活动是必须的。细胞基因组DNA不断受到内源性(如活性氧自由基、细胞代谢中间产物、DNA复制压力)和外源性(如电离辐射、化学致癌物质、紫外线)等因素的影响而发生损伤。生物体进化出一套复杂而精细的 DNA损伤响应机制,用于修复损伤的 DNA,维持基因组的稳定性,避免肿瘤、早衰等相关疾病的发生。本课题组用哺乳动物细胞作为模型系统,研究细胞响应DNA损伤的分子、细胞机制。并以此为切入点,探索肿瘤等疾病发生的分子机制,为临床诊断、治疗策略及药物研发提供理论指导。

欢迎有志于生物医学基础研究的同学报考及调剂。


代表性学术论文(通讯作者*及第一作者#):

(1) Li, Y.; Zhang Y.; Shah, S.; Chang C.; Wang H*.; Wu X*. MutSβ protects common fragile sites by facilitating homology-directed repair at DNA double-strand breaks with secondary structures. Nucleic acids research 2023, 1-16.

(2) Zhao, Y.; Hou, K.; Li, Y.; Hao, S.; Liu, Y.; Na, Y.; Li, C.; Cui, J.; Xu, X.; Wu, X.; Wang, H*. Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic acids research 2023, 1-17.

(3) Hao, S.; Wang, Y.; Zhao, Y.; Gao, W.; Cui, W.; Li, Y.; Cui, J.; Liu, Y.; Lin, L.; Xu, X.; Wang, H*. Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription-replication conflicts caused by replication stress. Nucleic acids research 2022, 50, 9873-9892.

(4) Zhao, Y.; Hao, S.; Wu, W.; Li, Y.; Hou, K.; Liu, Y.; Cui, W.; Xu, X.; Wang, H*. Lysine Crotonylation: An Emerging Player in DNA Damage Response. Biomolecules 2022, 12.

(5) Li, S#.; Wang, H#.; Jehi, S.; Li, J.; Liu, S.; Wang, Z.; Truong, L.; Chiba, T.; Wang, Z.; Wu, X. PIF1 helicase promotes break-induced replication in mammalian cells. The EMBO journal 2021, 40, e104509.

(6) Ren, J.; Wu, Y.; Wang, Y.; Zhao, Y.; Li, Y.; Hao, S.; Lin, L.; Zhang, S.; Xu, X.; Wang, H*. CtIP suppresses primary microRNA maturation and promotes metastasis of colon cancer cells in a xenograft mouse model. The Journal of biological chemistry 2021, 296, 100707.

(7) Zhang, S.; Hao, S.; Qiu, Z.; Wang, Y.; Zhao, Y.; Li, Y.; Gao, W.; Wu, Y.; Liu, C.; Xu, X.; Wang, H*. Cadmium disrupts the DNA damage response by destabilizing RNF168. Food Chem Toxicol 2019, 133, 110745.

(8) Wang, H#.; Li, S.; Oaks, J.; Ren, J.; Li, L.; Wu, X. The concerted roles of FANCM and Rad52 in the protection of common fragile sites. Nature communications 2018, 9, 2791.

(9) Wang, H#.; Li, S#..; Zhang, H.; Wang, Y.; Hao, S.; Wu, X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS genetics 2018, 14, e1007816.

(10) Wang, H#*.; Qiu, Z.; Liu, B.; Wu, Y.; Ren, J.; Liu, Y.; Zhao, Y.; Wang, Y.; Hao, S.; Li, Z.; Peng, B.; Xu, X*. PLK1 targets CtIP to promote microhomology-mediated end joining. Nucleic acids research 2018, 46, 10724-10739.

(11) Wang, H#*.; Xu, X*. Microhomology-mediated end joining: new players join the team. Cell Biosci 2017, 7, 6.

(12) Wang, H#.; Li, Y#.; Truong, L. N.; Shi, L. Z.; Hwang, P. Y.; He, J.; Do, J.; Cho, M. J.; Li, H.; Negrete, A.; Shiloach, J.; Berns, M. W.; Shen, B.; Chen, L.; Wu, X. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Molecular cell 2014, 54, 1012-1021.

(13) Wang, H#.; Shi, L. Z.; Wong, C. C.; Han, X.; Hwang, P. Y.; Truong, L. N.; Zhu, Q.; Shao, Z.; Chen, D. J.; Berns, M. W.; Yates, J. R., 3rd; Chen, L.; Wu, X. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS genetics 2013, 9, e1003277.

(14) Wang, H#.; Shao, Z.; Shi, L. Z.; Hwang, P. Y.; Truong, L. N.; Berns, M. W.; Chen, D. J.; Wu, X. CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks. The Journal of biological chemistry 2012, 287, 21471-21480.

(15) Wang, H#.; Du, Y.; Xiang, B.; Lin, W.; Li, X.; Wei, Q. A renewed model of CNA regulation involving its C-terminal regulatory domain and CaM. Biochemistry 2008, 47, 4461-4468.

(16) Wang, H#.; Yao, S.; Lin, W.; Du, Y.; Xiang, B.; He, S.; Huang, C.; Wei, Q. Different roles of Loop 7 in inhibition of calcineurin. Biochem Biophys Res Commun 2007, 362, 263-268.

(17) Wang, H#. L.; Du, Y. W.; Xiang, B. Q.; Lin, W. L.; Wei, Q. The regulatory domains of CNA have different effects on the inhibition of CN activity by FK506 and CsA. IUBMB Life 2007, 59, 388-393.


代表性学术论文(共同作者):

(1) Gan, X.; Zhang, Y.; Jiang, D.; Shi, J.; Zhao, H.; Xie, C.; Wang, Y.; Xu, J.; Zhang, X.; Cai, G.; Wang, H.; Huang, J.; Chen, X. Proper RPA acetylation promotes accurate DNA replication and repair. Nucleic acids research 2023, 51, 5565-5583.

(2) Qiu, Z.; Hao, S.; Song, S.; Zhang, R.; Yan, T.; Lu, Z.; Wang, H.; Jia, Z.; Zheng, J. PLK1-mediated phosphorylation of PPIL2 regulates HR via CtIP. Frontiers in cell and developmental biology 2022, 10, 902403.

(3) Peng, B.; Shi, R.; Bian, J.; Li, Y.; Wang, P.; Wang, H.; Liao, J.; Zhu, W. G.; Xu, X. PARP1 and CHK1 coordinate PLK1 enzymatic activity during the DNA damage response to promote homologous recombination-mediated repair. Nucleic acids research 2021, 49, 7554-7570.

(4) Chen, H.; Shan, J.; Chen, D.; Wang, R.; Qi, W.; Wang, H.; Ke, Y.; Liu, W.; Zeng, X. CtIP promotes G2/M arrest in etoposide-treated HCT116 cells in a p53-independent manner. Journal of cellular physiology 2019, 234, 11871-11881.

(5) Han, X.; Peng, B.; Xiao, B. B.; Sheng-Li, C.; Yang, C. R.; Wang, W. Z.; Wang, F. C.; Li, H. Y.; Yuan, X. L.; Shi, R.; Liao, J.; Wang, H.; Li, J.; Xu, X. Synthesis and evaluation of chalcone analogues containing a 4-oxoquinazolin-2-yl group as potential anti-tumor agents. Eur J Med Chem 2019, 162, 586-601.

(6) Yang, C. R.; Peng, B.; Cao, S. L.; Ren, T. T.; Jiang, W.; Wang, F. C.; Li, Y. S.; Wang, G.; Li, Z.; Xu, S.; Liao, J.; Wang, H.; Li, J.; Xu, X. Synthesis, cytotoxic evaluation and target identification of thieno[2,3-d]pyrimidine derivatives with a dithiocarbamate side chain at C2 position. Eur J Med Chem 2018, 154, 324-340.

(7) Li, Y. S.; Peng, B.; Ma, L.; Cao, S. L.; Bai, L. L.; Yang, C. R.; Wan, C. Q.; Yan, H. J.; Ding, P. P.; Li, Z. F.; Liao, J.; Meng, Y. Y.; Wang, H. L.; Li, J.; Xu, X. Synthesis, crystal structures and antitumor activity of two platinum(II) complexes with methyl hydrazinecarbodithioate derivatives of indolin-2-one. Eur J Med Chem 2017, 127, 137-146.

(8) Ding, P. P.; Gao, M.; Mao, B. B.; Cao, S. L.; Liu, C. H.; Yang, C. R.; Li, Z. F.; Liao, J.; Zhao, H.; Li, Z.; Li, J.; Wang, H.; Xu, X. Synthesis and biological evaluation of quinazolin-4(3H)-one derivatives bearing dithiocarbamate side chain at C2-position as potential antitumor agents. Eur J Med Chem 2016, 108, 364-373.

(9) Peng, B.; Wang, J.; Hu, Y.; Zhao, H.; Hou, W.; Zhao, H.; Wang, H.; Liao, J.; Xu, X. Modulation of LSD1 phosphorylation by CK2/WIP1 regulates RNF168-dependent 53BP1 recruitment in response to DNA damage. Nucleic acids research 2015, 43, 5936-5947.

(10) Makharashvili, N.; Tubbs, A. T.; Yang, S. H.; Wang, H.; Barton, O.; Zhou, Y.; Deshpande, R. A.; Lee, J. H.; Lobrich, M.; Sleckman, B. P.; Wu, X.; Paull, T. T. Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Molecular cell 2014, 54, 1022-1033.

(11) Truong, L. N.; Li, Y.; Shi, L. Z.; Hwang, P. Y.; He, J.; Wang, H.; Razavian, N.; Berns, M. W.; Wu, X. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 2013, 110, 7720-7725.

(12) Ye, Q.; Wang, H.; Zheng, J.; Wei, Q.; Jia, Z. The complex structure of calmodulin bound to a calcineurin peptide. Proteins 2008, 73, 19-27.