贰-尘补颈濒:肠补辞濒颈尘颈苍蔼肠苍耻.别诲耻.肠苍
微生物学,酿酒酵母代谢工程,合成生物学
主要经历
2024.1-今 91糖心vlog传媒 教授
2011.1-2023.12 91糖心vlog传媒 副教授
2019.3-2019.9 瑞典查尔姆斯理工大学 访问学者
2010.4-2010.10 加拿大萨斯喀彻温大学医学院 博士后
2008.4-2010.4 基因港(香港)科技有限公司&香港中文大学 Senior Scientist
2008.2 天津大学化工学院 工学博士
主要研究方向
1. 酿酒酵母代谢工程有效高产乙醇的机制解析;
2. 极端条件下长周期实验室适应性进化酿酒酵母的分子动力学特征;
3. 基于合成生物学生产高附加值产物(萜类)
主持在研课题:
国家自然科学基金面上项目(22278273):基于酵母木糖利用与细胞重塑抗逆的纤维素乙醇高产机制研究,2023-2026.
主要发表文章:
Li S, Wang Y, Dong Q, Yuan Z, Mu T, Xue Z*, Cao L*. Polyol-assisted ternary deep eutectic solvent protective lignocellulose pretreatment for high-efficiency xylan utilization and ethanol production. Carbohydr Polym, 346:122628,2024.
Zhao R, Li H, Li Q, Jia Z, Li S, Zhao L, Li S, Wang Y, Fan W, Ren R, Yuan Z, Yang M, Wang X, Zhao X, Xiao W, Zhao J, Cao L*. High titer (>100 g/L) ethanol production from pretreated corn stover hydrolysate by modified yeast strains. Bioresour Technol, 391(Pt B):129993, 2024.
Hongshen Li, Zefang Jia, Li Wei, Qian Lu, Wenxin Fan, Yuwei Wang, Limin Cao*, and Shizhong Li*. Compacted Silage Fermentation on Whole Sweet Sorghum Plant for Distributed Bioethanol Production. ACS Sustainable Chem Eng,11:12739-12746, 2023.
High-solids saccharification and fermentation of ball-milled corn stover enabling high titer bioethanol production. Dingping He, Xueli Chen, Minsheng Lu, Suan Shi,Limin Cao, Haitao Yu, Hao Lin, Xiwen Jia, Lujia Han, Weihua Xiao*. Renew Energ, 202:336-346, 2022.
Wang H#, Cao L#, Li Q, Wijayawardene NN, Zhao J, Cheng M, Li QR, Li X, Promputtha I, Kang YQ. Overexpressing GRE3 in Saccharomyces cerevisiae enables high ethanol production from different lignocellulose hydrolysates. Front Microbiol, 13:1085114, 2022.
Li, X., Zhao, R., Li, S., Wang, Y., Wang, X., Yang, W., Yang, M., Xiao, W., Yang, S., Lin, X., Zheng, X., Ma, X., Zhao, L., Xiao, W., and Cao, L*. Global reprogramming of xylose metabolism in Saccharomyces cerevisiaeefficiently produces ethanol from lignocellulose hydrolysates. Ind Crop Prod, 179:114666, 2022.
Sun Y, Kong M, Li X, Li Q, Xue Q, Hou J, Jia Z, Lei Z, Xiao W, Shi S, Cao, L*. Metabolic and Evolutionary Engineering of Diploid Yeast for the Production of First- and Second-Generation Ethanol. Front Bioeng Biotechnol, 9:835928,2022.
Yuanhang Ai, Shengqiu Feng, Youmei Wang, Jun Lu, Mengdan Sun, Huizhen Hu, Zhen Hu, Ran Zhang, Peng Liu, Hao Peng, Yanting Wang, Limin Cao, Tao Xia, Liangcai Peng. Integrated genetic and chemical modification with rice straw for maximum bioethanol production. Ind Crop Prod, 173:114133, 2021.
Zhu Y, Cao, L*. Targeted Integration of Complex Genetic Elements at Multi-Copy Loci by Golden Gate Assembly. Methods Mol Biol, 2196:143-151,2021.
Zhu Y, Zhang J, Zhu L, Jia Z, Li Q, Xiao W*, Cao, L*. Minimize the Xylitol Production in Saccharomyces cerevisiae by Balancing the Xylose Redox Metabolic Pathway. Front Bioeng Biotechnol, 9:639595, 2021.
Liu L, Jin M, Huang M, Zhu Y, Yuan W, Kang Y, Kong M, Ali S, Jia Z, Xu Z, Xiao W, Cao, L*. Front Bioeng Biotechnol, 9:655272, 2021.
Kong M, Li X, Li T, Zhao X, Jin M, Zhou X, Gu H, Mr?a V, Xiao W, Cao, L*. Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates. Bioresour Technol, 337:125487, 2021.
Zhu L, Li P, Sun T, Kong M, Li X, Ali S, Liu W, Fan S, Qiao J, Li S, Peng L, He B, Jin M, Xiao W, Cao, L*. Overexpression of SFA1 in engineered Saccharomyces cerevisiae to increase xylose utilization and ethanol production from different lignocellulose hydrolysates. Bioresour Technol, 313:123724, 2020.
Zhang C, Xue Q, Hou J, Mohsin A, Zhang M, Guo M, Zhu Y, Bao J, Wang J, Xiao W, Cao, L*. In-Depth Two-Stage Transcriptional Reprogramming and Evolutionary Engineering of Saccharomyces cerevisiae for Efficient Bioethanol Production from Xylose with Acetate. J Agric Food Chem,67(43):12002-12012, 2019.
Zhang X, Wang J, Zhang W, Hou JY, Xiao W*, Cao L*. Appl Microbiol Biotechnol,102(16):7207-7217, 2018.
Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai*. Construction, characterization and application of a genomewide promoter library in Saccharomyces cerevisiae. Front Chem Sci Eng, 11(1): 107-116, 2017. (Cover story)
YX, Q, ZS, JY, Cao LM*. Rational promoter elements and evolutionary engineering approaches for efficient xylose fermentation in Saccharomyces cerevisiae. J Renew Sustain Ener, 8, 053104, 2016.
#*, #, , , , , , *. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. , 24:150-9, 2014.